upm/src/bmg160/bmg160.c
Jon Trulson 8dcd22794b bmg160: C port, FTI, C++ wraps C
Signed-off-by: Jon Trulson <jtrulson@ics.com>
2017-03-30 16:43:35 -06:00

778 lines
19 KiB
C

/*
* Author: Jon Trulson <jtrulson@ics.com>
* Copyright (c) 2017 Intel Corporation.
*
* The MIT License
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <unistd.h>
#include <assert.h>
#include "upm_utilities.h"
#include "bmg160.h"
// macro for converting a uint8_t low/high pair into a float
#define INT16_TO_FLOAT(h, l) \
(float)( (int16_t)( (l) | ((h) << 8) ) )
// SPI CS on and off functions
static void _csOn(const bmg160_context dev)
{
assert(dev != NULL);
if (dev->gpioCS)
mraa_gpio_write(dev->gpioCS, 0);
}
static void _csOff(const bmg160_context dev)
{
assert(dev != NULL);
if (dev->gpioCS)
mraa_gpio_write(dev->gpioCS, 1);
}
// init
bmg160_context bmg160_init(int bus, int addr, int cs)
{
bmg160_context dev =
(bmg160_context)malloc(sizeof(struct _bmg160_context));
if (!dev)
return NULL;
// zero out context
memset((void *)dev, 0, sizeof(struct _bmg160_context));
// make sure MRAA is initialized
if (mraa_init() != MRAA_SUCCESS)
{
printf("%s: mraa_init() failed.\n", __FUNCTION__);
bmg160_close(dev);
return NULL;
}
if (addr < 0)
dev->isSPI = true;
if (dev->isSPI)
{
if (!(dev->spi = mraa_spi_init(bus)))
{
printf("%s: mraa_spi_init() failed.\n", __FUNCTION__);
bmg160_close(dev);
return NULL;
}
// Only create cs context if we are actually using a valid pin.
// A hardware controlled pin should specify cs as -1.
if (cs >= 0)
{
if (!(dev->gpioCS = mraa_gpio_init(cs)))
{
printf("%s: mraa_gpio_init() failed.\n", __FUNCTION__);
bmg160_close(dev);
return NULL;
}
mraa_gpio_dir(dev->gpioCS, MRAA_GPIO_OUT);
}
mraa_spi_mode(dev->spi, MRAA_SPI_MODE0);
if (mraa_spi_frequency(dev->spi, 5000000))
{
printf("%s: mraa_spi_frequency() failed.\n", __FUNCTION__);
bmg160_close(dev);
return NULL;
}
}
else
{
// I2C
if (!(dev->i2c = mraa_i2c_init(bus)))
{
printf("%s: mraa_i2c_init() failed.\n", __FUNCTION__);
bmg160_close(dev);
return NULL;
}
if (mraa_i2c_address(dev->i2c, addr))
{
printf("%s: mraa_i2c_address() failed.\n", __FUNCTION__);
bmg160_close(dev);
return NULL;
}
}
// check the chip id
uint8_t chipID = bmg160_get_chip_id(dev);
if (chipID != BMG160_CHIPID)
{
printf("%s: invalid chip id: %02x. Expected %02x\n",
__FUNCTION__, chipID, BMG160_CHIPID);
bmg160_close(dev);
return NULL;
}
// call devinit with default options
if (bmg160_devinit(dev, BMG160_POWER_MODE_NORMAL, BMG160_RANGE_250,
BMG160_BW_400_47))
{
printf("%s: bmg160_devinit() failed.\n", __FUNCTION__);
bmg160_close(dev);
return NULL;
}
return dev;
}
void bmg160_close(bmg160_context dev)
{
assert(dev != NULL);
bmg160_uninstall_isr(dev, BMG160_INTERRUPT_INT1);
bmg160_uninstall_isr(dev, BMG160_INTERRUPT_INT2);
if (dev->i2c)
mraa_i2c_stop(dev->i2c);
if (dev->spi)
mraa_spi_stop(dev->spi);
if (dev->gpioCS)
mraa_gpio_close(dev->gpioCS);
free(dev);
}
upm_result_t bmg160_devinit(const bmg160_context dev,
BMG160_POWER_MODE_T pwr,
BMG160_RANGE_T range,
BMG160_BW_T bw)
{
assert(dev != NULL);
if (bmg160_set_power_mode(dev, pwr))
{
printf("%s: bmg160_set_power_mode() failed.\n", __FUNCTION__);
return UPM_ERROR_OPERATION_FAILED;
}
upm_delay_ms(50); // 50ms, in case we are waking up
// set our range and bandwidth, make sure register shadowing is
// enabled, enable output filtering, and set our FIFO config
if (bmg160_set_range(dev, range)
|| bmg160_set_bandwidth(dev, bw)
|| bmg160_enable_register_shadowing(dev, true)
|| bmg160_enable_output_filtering(dev, true)
|| bmg160_fifo_config(dev, BMG160_FIFO_MODE_BYPASS,
BMG160_FIFO_DATA_SEL_XYZ))
{
printf("%s: failed to set configuration parameters.\n",
__FUNCTION__);
return UPM_ERROR_OPERATION_FAILED;
}
bmg160_enable_fifo(dev, true);
// settle
upm_delay_ms(50);
return UPM_SUCCESS;
}
upm_result_t bmg160_update(const bmg160_context dev)
{
assert(dev != NULL);
int bufLen = 7; // max, non-FIFO
uint8_t startReg = BMG160_REG_RATE_X_LSB;
if (dev->useFIFO)
{
bufLen = 6;
startReg = BMG160_REG_FIFO_DATA;
}
uint8_t buf[bufLen];
if (bmg160_read_regs(dev, startReg, buf, bufLen) != bufLen)
{
printf("%s: bmg160_read_regs() failed to read %d bytes\n",
__FUNCTION__, bufLen);
return UPM_ERROR_OPERATION_FAILED;
}
// x msb lsb
dev->gyrX = INT16_TO_FLOAT(buf[1], buf[0]);
// y
dev->gyrY = INT16_TO_FLOAT(buf[3], buf[2]);
// z
dev->gyrZ = INT16_TO_FLOAT(buf[5], buf[4]);
// get the temperature...
int8_t temp = 0;
if (dev->useFIFO)
{
// we have to read temperature separately...
temp = (int8_t)bmg160_read_reg(dev, BMG160_REG_TEMP);
}
else
{
// we already got it
temp = (int8_t)buf[6];
}
// .5K/LSB, 23C center point
dev->temperature = ((float)temp / 2.0) + 23.0;
return UPM_SUCCESS;
}
void bmg160_enable_fifo(const bmg160_context dev, bool useFIFO)
{
assert(dev != NULL);
dev->useFIFO = useFIFO;
}
uint8_t bmg160_read_reg(const bmg160_context dev, uint8_t reg)
{
assert(dev != NULL);
if (dev->isSPI)
{
reg |= 0x80; // needed for read
uint8_t pkt[2] = {reg, 0};
_csOn(dev);
if (mraa_spi_transfer_buf(dev->spi, pkt, pkt, 2))
{
_csOff(dev);
printf("%s: mraa_spi_transfer_buf() failed.\n", __FUNCTION__);
return 0xff;
}
_csOff(dev);
return pkt[1];
}
else
return (uint8_t)mraa_i2c_read_byte_data(dev->i2c, reg);
}
int bmg160_read_regs(const bmg160_context dev, uint8_t reg,
uint8_t *buffer, int len)
{
assert(dev != NULL);
if (dev->isSPI)
{
reg |= 0x80; // needed for read
uint8_t sbuf[len + 1];
memset((char *)sbuf, 0, len + 1);
sbuf[0] = reg;
// We need to do it this way for edison - ie: use a single
// transfer rather than breaking it up into two like we used to.
// This means a buffer copy is now required, but that's the way
// it goes.
_csOn(dev);
if (mraa_spi_transfer_buf(dev->spi, sbuf, sbuf, len + 1))
{
_csOff(dev);
printf("%s: mraa_spi_transfer_buf() failed.\n", __FUNCTION__);
return -1;
}
_csOff(dev);
// now copy it into user buffer
for (int i=0; i<len; i++)
buffer[i] = sbuf[i + 1];
}
else
{
if (mraa_i2c_read_bytes_data(dev->i2c, reg, buffer, len) != len)
return -1;
}
return len;
}
upm_result_t bmg160_write_reg(const bmg160_context dev,
uint8_t reg, uint8_t val)
{
assert(dev != NULL);
if (dev->isSPI)
{
reg &= 0x7f; // mask off 0x80 for writing
uint8_t pkt[2] = {reg, val};
_csOn(dev);
if (mraa_spi_transfer_buf(dev->spi, pkt, NULL, 2))
{
_csOff(dev);
printf("%s: mraa_spi_transfer_buf() failed.",
__FUNCTION__);
return UPM_ERROR_OPERATION_FAILED;
}
_csOff(dev);
}
else
{
if (mraa_i2c_write_byte_data(dev->i2c, val, reg))
{
printf("%s: mraa_i2c_write_byte_data() failed.",
__FUNCTION__);
return UPM_ERROR_OPERATION_FAILED;
}
}
return UPM_SUCCESS;
}
uint8_t bmg160_get_chip_id(const bmg160_context dev)
{
assert(dev != NULL);
return bmg160_read_reg(dev, BMG160_REG_CHIP_ID);
}
void bmg160_get_gyroscope(const bmg160_context dev,
float *x, float *y, float *z)
{
assert(dev != NULL);
if (x)
*x = (dev->gyrX * dev->gyrScale) / 1000.0;
if (y)
*y = (dev->gyrY * dev->gyrScale) / 1000.0;
if (z)
*z = (dev->gyrZ * dev->gyrScale) / 1000.0;
}
float bmg160_get_temperature(const bmg160_context dev)
{
assert(dev != NULL);
return dev->temperature;
}
upm_result_t bmg160_reset(const bmg160_context dev)
{
assert(dev != NULL);
if (bmg160_write_reg(dev, BMG160_REG_SOFTRESET, BMG160_RESET_BYTE))
return UPM_ERROR_OPERATION_FAILED;
upm_delay(1);
return UPM_SUCCESS;
}
upm_result_t bmg160_set_range(const bmg160_context dev,
BMG160_RANGE_T range)
{
assert(dev != NULL);
// we also have to write a fixed '0x10' to the high-order bits for
// some reason (according to datasheet)
uint8_t reg = range | (_BMG160_GYR_RANGE_FIXED_VALUE
<< _BMG160_GYR_RANGE_FIXED_SHIFT);
if (bmg160_write_reg(dev, BMG160_REG_GYR_RANGE, reg))
return UPM_ERROR_OPERATION_FAILED;
switch(range)
{
case BMG160_RANGE_125:
dev->gyrScale = 3.8; // milli-degrees
break;
case BMG160_RANGE_250:
dev->gyrScale = 7.6;
break;
case BMG160_RANGE_500:
dev->gyrScale = 15.3;
break;
case BMG160_RANGE_1000:
dev->gyrScale = 30.5;
break;
case BMG160_RANGE_2000:
dev->gyrScale = 61.0;
break;
}
return UPM_SUCCESS;
}
upm_result_t bmg160_set_bandwidth(const bmg160_context dev,
BMG160_BW_T bw)
{
assert(dev != NULL);
if (bmg160_write_reg(dev, BMG160_REG_GYR_BW, bw))
return UPM_ERROR_OPERATION_FAILED;
return UPM_SUCCESS;
}
upm_result_t bmg160_set_power_mode(const bmg160_context dev,
BMG160_POWER_MODE_T power)
{
assert(dev != NULL);
// mask off reserved bits first
uint8_t reg =
bmg160_read_reg(dev, BMG160_REG_LPM1) & ~_BMG160_LPM1_RESERVED_BITS;
reg &= ~(_BMG160_LPM1_POWER_MODE_MASK << _BMG160_LPM1_POWER_MODE_SHIFT);
reg |= (power << _BMG160_LPM1_POWER_MODE_SHIFT);
if (bmg160_write_reg(dev, BMG160_REG_LPM1, power))
return UPM_ERROR_OPERATION_FAILED;
return UPM_SUCCESS;
}
upm_result_t bmg160_fifo_set_watermark(const bmg160_context dev, int wm)
{
assert(dev != NULL);
// mask off illegal values
uint8_t reg = ((uint8_t)wm) & _BMG160_FIFO_CONFIG_0_WATER_MARK_MASK;
if (bmg160_write_reg(dev, BMG160_REG_FIFO_CONFIG_0, reg))
return UPM_ERROR_OPERATION_FAILED;
return UPM_SUCCESS;
}
upm_result_t bmg160_fifo_config(const bmg160_context dev,
BMG160_FIFO_MODE_T mode,
BMG160_FIFO_DATA_SEL_T axes)
{
assert(dev != NULL);
uint8_t reg = ( (mode << _BMG160_FIFO_CONFIG_1_FIFO_MODE_SHIFT) |
(axes << _BMG160_FIFO_CONFIG_1_FIFO_DATA_SHIFT) );
if (bmg160_write_reg(dev, BMG160_REG_FIFO_CONFIG_1, reg))
return UPM_ERROR_OPERATION_FAILED;
return UPM_SUCCESS;
}
uint8_t bmg160_get_interrupt_enable0(const bmg160_context dev)
{
assert(dev != NULL);
return (bmg160_read_reg(dev, BMG160_REG_INT_EN_0)
& ~_BMG160_INT_EN_0_RESERVED_BITS);
}
upm_result_t bmg160_set_interrupt_enable0(const bmg160_context dev,
uint8_t bits)
{
assert(dev != NULL);
uint8_t reg = bits & ~_BMG160_INT_EN_0_RESERVED_BITS;
if (bmg160_write_reg(dev, BMG160_REG_INT_EN_0, reg))
return UPM_ERROR_OPERATION_FAILED;
return UPM_SUCCESS;
}
uint8_t bmg160_get_interrupt_map0(const bmg160_context dev)
{
assert(dev != NULL);
return bmg160_read_reg(dev, BMG160_REG_INT_MAP_0)
& ~_BMG160_INT_MAP_0_RESERVED_BITS;
}
upm_result_t bmg160_set_interrupt_map0(const bmg160_context dev, uint8_t bits)
{
assert(dev != NULL);
uint8_t reg = bits & ~_BMG160_INT_MAP_0_RESERVED_BITS;
if (bmg160_write_reg(dev, BMG160_REG_INT_MAP_0, reg))
return UPM_ERROR_OPERATION_FAILED;
return UPM_SUCCESS;
}
uint8_t bmg160_get_interrupt_map1(const bmg160_context dev)
{
assert(dev != NULL);
return bmg160_read_reg(dev, BMG160_REG_INT_MAP_1);
}
upm_result_t bmg160_set_interrupt_map1(const bmg160_context dev, uint8_t bits)
{
assert(dev != NULL);
if (bmg160_write_reg(dev, BMG160_REG_INT_MAP_1, bits))
return UPM_ERROR_OPERATION_FAILED;
return UPM_SUCCESS;
}
// REG_INT_EN1, for some strange reason
uint8_t bmg160_get_interrupt_src(const bmg160_context dev)
{
assert(dev != NULL);
return (bmg160_read_reg(dev, BMG160_REG_INT_EN_1)
& ~_BMG160_INT_EN_1_INT1_RESERVED_BITS);
}
upm_result_t bmg160_set_interrupt_src(const bmg160_context dev, uint8_t bits)
{
assert(dev != NULL);
uint8_t reg = bits & ~_BMG160_INT_EN_1_INT1_RESERVED_BITS;
if (bmg160_write_reg(dev, BMG160_REG_INT_EN_1, reg))
return UPM_ERROR_OPERATION_FAILED;
return UPM_SUCCESS;
}
uint8_t bmg160_get_interrupt_output_control(const bmg160_context dev)
{
assert(dev != NULL);
return (bmg160_read_reg(dev, BMG160_REG_INT_EN_1)
& ~_BMG160_INT_EN_1_INT1_RESERVED_BITS);
}
upm_result_t bmg160_set_interrupt_output_control(const bmg160_context dev,
uint8_t bits)
{
assert(dev != NULL);
uint8_t reg = bits & ~_BMG160_INT_EN_1_INT1_RESERVED_BITS;
if (bmg160_write_reg(dev, BMG160_REG_INT_EN_1, reg))
return UPM_ERROR_OPERATION_FAILED;
return UPM_SUCCESS;
}
upm_result_t bmg160_clear_interrupt_latches(const bmg160_context dev)
{
assert(dev != NULL);
uint8_t reg =
bmg160_read_reg(dev, BMG160_REG_INT_RST_LATCH) & ~_BMG160_INT_RST_LATCH_RESERVED_BITS;
reg |= BMG160_INT_RST_LATCH_RESET_INT;
if (bmg160_write_reg(dev, BMG160_REG_INT_RST_LATCH, reg))
return UPM_ERROR_OPERATION_FAILED;
return UPM_SUCCESS;
}
BMG160_RST_LATCH_T bmg160_get_interrupt_latch_behavior(const bmg160_context dev)
{
assert(dev != NULL);
uint8_t reg = bmg160_read_reg(dev, BMG160_REG_INT_RST_LATCH)
& ~_BMG160_INT_RST_LATCH_RESERVED_BITS;
reg &= (_BMG160_INT_RST_LATCH_MASK << _BMG160_INT_RST_LATCH_SHIFT);
return (BMG160_RST_LATCH_T)reg;
}
upm_result_t bmg160_set_interrupt_latch_behavior(const bmg160_context dev,
BMG160_RST_LATCH_T latch)
{
assert(dev != NULL);
uint8_t reg =
bmg160_read_reg(dev, BMG160_REG_INT_RST_LATCH) & ~_BMG160_INT_RST_LATCH_RESERVED_BITS;
reg &= ~(_BMG160_INT_RST_LATCH_MASK << _BMG160_INT_RST_LATCH_SHIFT);
reg |= (latch << _BMG160_INT_RST_LATCH_SHIFT);
if (bmg160_write_reg(dev, BMG160_REG_INT_RST_LATCH, reg))
return UPM_ERROR_OPERATION_FAILED;
return UPM_SUCCESS;
}
upm_result_t bmg160_enable_register_shadowing(const bmg160_context dev,
bool shadow)
{
assert(dev != NULL);
uint8_t reg =
bmg160_read_reg(dev, BMG160_REG_RATE_HBW) & ~_BMG160_RATE_HBW_RESERVED_BITS;
if (shadow)
reg &= ~BMG160_RATE_HBW_SHADOW_DIS;
else
reg |= BMG160_RATE_HBW_SHADOW_DIS;
if (bmg160_write_reg(dev, BMG160_REG_RATE_HBW, reg))
return UPM_ERROR_OPERATION_FAILED;
return UPM_SUCCESS;
}
upm_result_t bmg160_enable_output_filtering(const bmg160_context dev,
bool filter)
{
assert(dev != NULL);
uint8_t reg =
bmg160_read_reg(dev, BMG160_REG_RATE_HBW) & ~_BMG160_RATE_HBW_RESERVED_BITS;
if (filter)
reg &= ~BMG160_RATE_HBW_DATA_HIGH_BW;
else
reg |= BMG160_RATE_HBW_DATA_HIGH_BW;
if (bmg160_write_reg(dev, BMG160_REG_RATE_HBW, reg))
return UPM_ERROR_OPERATION_FAILED;
return UPM_SUCCESS;
}
uint8_t bmg160_get_interrupt_status0(const bmg160_context dev)
{
assert(dev != NULL);
return (bmg160_read_reg(dev, BMG160_REG_INT_STATUS_0)
& ~_BMG160_INT_STATUS_0_RESERVED_BITS);
}
uint8_t bmg160_get_interrupt_status1(const bmg160_context dev)
{
assert(dev != NULL);
return (bmg160_read_reg(dev, BMG160_REG_INT_STATUS_1)
& ~_BMG160_INT_STATUS_1_RESERVED_BITS);
}
uint8_t bmg160_get_interrupt_status2(const bmg160_context dev)
{
assert(dev != NULL);
return (bmg160_read_reg(dev, BMG160_REG_INT_STATUS_2)
& ~_BMG160_INT_STATUS_2_RESERVED_BITS);
}
uint8_t bmg160_get_interrupt_status3(const bmg160_context dev)
{
assert(dev != NULL);
return (bmg160_read_reg(dev, BMG160_REG_INT_STATUS_3)
& ~_BMG160_INT_STATUS_3_RESERVED_BITS);
}
upm_result_t bmg160_install_isr(const bmg160_context dev,
BMG160_INTERRUPT_PINS_T intr, int gpio,
mraa_gpio_edge_t level,
void (*isr)(void *), void *arg)
{
assert(dev != NULL);
// delete any existing ISR and GPIO context for this interrupt
bmg160_uninstall_isr(dev, intr);
mraa_gpio_context gpio_isr = NULL;
// create gpio context
if (!(gpio_isr = mraa_gpio_init(gpio)))
{
printf("%s: mraa_gpio_init() failed.\n", __FUNCTION__);
return UPM_ERROR_OPERATION_FAILED;
}
mraa_gpio_dir(gpio_isr, MRAA_GPIO_IN);
if (mraa_gpio_isr(gpio_isr, level, isr, arg))
{
mraa_gpio_close(gpio_isr);
printf("%s: mraa_gpio_isr() failed.\n", __FUNCTION__);
return UPM_ERROR_OPERATION_FAILED;
}
switch (intr)
{
case BMG160_INTERRUPT_INT1:
dev->gpio1 = gpio_isr;
break;
case BMG160_INTERRUPT_INT2:
dev->gpio2 = gpio_isr;
break;
}
return UPM_SUCCESS;
}
void bmg160_uninstall_isr(const bmg160_context dev,
BMG160_INTERRUPT_PINS_T intr)
{
assert(dev != NULL);
switch (intr)
{
case BMG160_INTERRUPT_INT1:
if (dev->gpio1)
{
mraa_gpio_isr_exit(dev->gpio1);
mraa_gpio_close(dev->gpio1);
dev->gpio1 = NULL;
}
break;
case BMG160_INTERRUPT_INT2:
if (dev->gpio2)
{
mraa_gpio_isr_exit(dev->gpio2);
mraa_gpio_close(dev->gpio2);
dev->gpio2 = NULL;
}
break;
}
}