upm/src/nrf8001/hal_aci_tl.cpp
Kiveisha Yevgeniy 044037b892 nrf8001: added new BLE module with broadcasting example
Signed-off-by: Kiveisha Yevgeniy <yevgeniy.kiveisha@intel.com>
2014-08-12 23:40:47 +00:00

455 lines
12 KiB
C++

/* Copyright (c) 2014, Nordic Semiconductor ASA
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
/** @file
@brief Implementation of the ACI transport layer module
*/
#include <stdio.h>
#include "hal_platform.h"
#include "hal_aci_tl.h"
#include "aci_queue.h"
#define HIGH 1
#define LOW 0
#define REVERSE_BITS(byte) (((reverse_lookup[(byte & 0x0F)]) << 4) + reverse_lookup[((byte & 0xF0) >> 4)])
static const uint8_t reverse_lookup[] = { 0, 8, 4, 12, 2, 10, 6, 14,1, 9, 5, 13,3, 11, 7, 15 };
static void m_aci_data_print(hal_aci_data_t *p_data);
static void m_aci_event_check(void);
static void m_aci_isr(void);
static void m_aci_pins_set(aci_pins_t *a_pins_ptr);
static inline void m_aci_reqn_disable (void);
static inline void m_aci_reqn_enable (void);
static void m_aci_q_flush(void);
static bool m_aci_spi_transfer(hal_aci_data_t * data_to_send, hal_aci_data_t * received_data);
static uint8_t spi_readwrite(uint8_t aci_byte);
static bool aci_debug_print = false;
aci_queue_t aci_tx_q;
aci_queue_t aci_rx_q;
static aci_pins_t *a_pins_local_ptr;
void m_aci_data_print(hal_aci_data_t *p_data)
{
const uint8_t length = p_data->buffer[0];
uint8_t i;
printf("%d\n", length);
printf(" :\n");
for (i=0; i<=length; i++)
{
printf("%x", p_data->buffer[i]);
printf(", ");
}
printf("\n");
}
/*
Interrupt service routine called when the RDYN line goes low. Runs the SPI transfer.
*/
static void m_aci_isr(void)
{
hal_aci_data_t data_to_send;
hal_aci_data_t received_data;
// Receive from queue
if (!aci_queue_dequeue_from_isr(&aci_tx_q, &data_to_send))
{
/* queue was empty, nothing to send */
data_to_send.status_byte = 0;
data_to_send.buffer[0] = 0;
}
// Receive and/or transmit data
m_aci_spi_transfer(&data_to_send, &received_data);
if (!aci_queue_is_full_from_isr(&aci_rx_q) && !aci_queue_is_empty_from_isr(&aci_tx_q))
{
m_aci_reqn_enable();
}
// Check if we received data
if (received_data.buffer[0] > 0)
{
if (!aci_queue_enqueue_from_isr(&aci_rx_q, &received_data))
{
/* Receive Buffer full.
Should never happen.
Spin in a while loop.
*/
while(1);
}
// Disable ready line interrupt until we have room to store incoming messages
if (aci_queue_is_full_from_isr(&aci_rx_q))
{
// detachInterrupt(a_pins_local_ptr->interrupt_number);
}
}
return;
}
/*
Checks the RDYN line and runs the SPI transfer if required.
*/
static void m_aci_event_check(void)
{
hal_aci_data_t data_to_send;
hal_aci_data_t received_data;
// No room to store incoming messages
if (aci_queue_is_full(&aci_rx_q))
{
return;
}
// If the ready line is disabled and we have pending messages outgoing we enable the request line
if (HIGH == mraa_gpio_read (a_pins_local_ptr->m_rdy_ctx))
// if (HIGH == digitalRead(a_pins_local_ptr->rdyn_pin))
{
if (!aci_queue_is_empty(&aci_tx_q))
{
m_aci_reqn_enable();
}
return;
}
// Receive from queue
if (!aci_queue_dequeue(&aci_tx_q, &data_to_send))
{
/* queue was empty, nothing to send */
data_to_send.status_byte = 0;
data_to_send.buffer[0] = 0;
}
// Receive and/or transmit data
m_aci_spi_transfer(&data_to_send, &received_data);
/* If there are messages to transmit, and we can store the reply, we request a new transfer */
if (!aci_queue_is_full(&aci_rx_q) && !aci_queue_is_empty(&aci_tx_q))
{
m_aci_reqn_enable();
}
// Check if we received data
if (received_data.buffer[0] > 0)
{
if (!aci_queue_enqueue(&aci_rx_q, &received_data))
{
/* Receive Buffer full.
Should never happen.
Spin in a while loop.
*/
while(1);
}
}
return;
}
/** @brief Point the low level library at the ACI pins specified
* @details
* The ACI pins are specified in the application and a pointer is made available for
* the low level library to use
*/
static void m_aci_pins_set(aci_pins_t *a_pins_ptr)
{
a_pins_local_ptr = a_pins_ptr;
}
static inline void m_aci_reqn_disable (void)
{
mraa_gpio_write (a_pins_local_ptr->m_req_ctx, HIGH);
}
static inline void m_aci_reqn_enable (void)
{
mraa_gpio_write (a_pins_local_ptr->m_req_ctx, LOW);
}
static void m_aci_q_flush(void)
{
// noInterrupts();
/* re-initialize aci cmd queue and aci event queue to flush them*/
aci_queue_init(&aci_tx_q);
aci_queue_init(&aci_rx_q);
// interrupts();
}
static bool m_aci_spi_transfer(hal_aci_data_t * data_to_send, hal_aci_data_t * received_data)
{
uint8_t byte_cnt;
uint8_t byte_sent_cnt;
uint8_t max_bytes;
m_aci_reqn_enable();
// Send length, receive header
byte_sent_cnt = 0;
received_data->status_byte = spi_readwrite(data_to_send->buffer[byte_sent_cnt++]);
// Send first byte, receive length from slave
received_data->buffer[0] = spi_readwrite(data_to_send->buffer[byte_sent_cnt++]);
if (0 == data_to_send->buffer[0])
{
max_bytes = received_data->buffer[0];
}
else
{
// Set the maximum to the biggest size. One command byte is already sent
max_bytes = (received_data->buffer[0] > (data_to_send->buffer[0] - 1))
? received_data->buffer[0]
: (data_to_send->buffer[0] - 1);
}
if (max_bytes > HAL_ACI_MAX_LENGTH)
{
max_bytes = HAL_ACI_MAX_LENGTH;
}
// Transmit/receive the rest of the packet
for (byte_cnt = 0; byte_cnt < max_bytes; byte_cnt++)
{
received_data->buffer[byte_cnt+1] = spi_readwrite(data_to_send->buffer[byte_sent_cnt++]);
}
// RDYN should follow the REQN line in approx 100ns
m_aci_reqn_disable();
return (max_bytes > 0);
}
void hal_aci_tl_debug_print(bool enable)
{
aci_debug_print = enable;
}
void hal_aci_tl_pin_reset(void)
{
if (UNUSED != a_pins_local_ptr->reset_pin)
{
// pinMode(a_pins_local_ptr->reset_pin, OUTPUT);
if ((REDBEARLAB_SHIELD_V1_1 == a_pins_local_ptr->board_name) ||
(REDBEARLAB_SHIELD_V2012_07 == a_pins_local_ptr->board_name))
{
//The reset for the Redbearlab v1.1 and v2012.07 boards are inverted and has a Power On Reset
//circuit that takes about 100ms to trigger the reset
mraa_gpio_write (a_pins_local_ptr->m_rst_ctx, HIGH);
usleep (100000);
mraa_gpio_write (a_pins_local_ptr->m_rst_ctx, LOW);
}
else
{
mraa_gpio_write (a_pins_local_ptr->m_rst_ctx, HIGH);
mraa_gpio_write (a_pins_local_ptr->m_rst_ctx, LOW);
mraa_gpio_write (a_pins_local_ptr->m_rst_ctx, HIGH);
}
}
}
bool hal_aci_tl_event_peek(hal_aci_data_t *p_aci_data)
{
if (!a_pins_local_ptr->interface_is_interrupt)
{
m_aci_event_check();
}
if (aci_queue_peek(&aci_rx_q, p_aci_data))
{
return true;
}
return false;
}
bool hal_aci_tl_event_get(hal_aci_data_t *p_aci_data)
{
bool was_full;
if (!a_pins_local_ptr->interface_is_interrupt && !aci_queue_is_full(&aci_rx_q))
{
m_aci_event_check();
}
was_full = aci_queue_is_full(&aci_rx_q);
if (aci_queue_dequeue(&aci_rx_q, p_aci_data))
{
if (aci_debug_print)
{
printf(" E");
m_aci_data_print(p_aci_data);
}
if (was_full && a_pins_local_ptr->interface_is_interrupt)
{
/* Enable RDY line interrupt again */
// attachInterrupt(a_pins_local_ptr->interrupt_number, m_aci_isr, LOW);
}
/* Attempt to pull REQN LOW since we've made room for new messages */
if (!aci_queue_is_full(&aci_rx_q) && !aci_queue_is_empty(&aci_tx_q))
{
m_aci_reqn_enable();
}
return true;
}
return false;
}
void hal_aci_tl_init(aci_pins_t *a_pins, bool debug)
{
mraa_result_t error = MRAA_SUCCESS;
aci_debug_print = debug;
/* Needs to be called as the first thing for proper intialization*/
m_aci_pins_set(a_pins);
/*
* Init SPI
*/
a_pins->m_spi = mraa_spi_init (0);
if (a_pins->m_spi == NULL) {
printf ("[ERROR] SPI failed to initilize\n");
}
mraa_spi_frequency (a_pins->m_spi, 2000000);
mraa_spi_mode (a_pins->m_spi, MRAA_SPI_MODE0);
mraa_spi_lsbmode (a_pins->m_spi, 1);
/* Initialize the ACI Command queue. This must be called after the delay above. */
aci_queue_init(&aci_tx_q);
aci_queue_init(&aci_rx_q);
// Configure the IO lines
a_pins->m_rdy_ctx = mraa_gpio_init (a_pins->rdyn_pin);
if (a_pins->m_rdy_ctx == NULL) {
printf ("[ERROR] GPIO failed to initilize \n");
}
a_pins->m_req_ctx = mraa_gpio_init (a_pins->reqn_pin);
if (a_pins->m_req_ctx == NULL) {
printf ("[ERROR] GPIO failed to initilize \n");
}
a_pins->m_rst_ctx = mraa_gpio_init (a_pins->reset_pin);
if (a_pins->m_rst_ctx == NULL) {
printf ("[ERROR] GPIO failed to initilize \n");
}
error = mraa_gpio_dir (a_pins->m_rdy_ctx, MRAA_GPIO_IN);
if (error != MRAA_SUCCESS) {
printf ("[ERROR] GPIO failed to initilize \n");
}
error = mraa_gpio_dir (a_pins->m_req_ctx, MRAA_GPIO_OUT);
if (error != MRAA_SUCCESS) {
printf ("[ERROR] GPIO failed to initilize \n");
}
error = mraa_gpio_dir (a_pins->m_rst_ctx, MRAA_GPIO_OUT);
if (error != MRAA_SUCCESS) {
printf ("[ERROR] GPIO failed to initilize \n");
}
if (UNUSED != a_pins->active_pin) {
}
/* Pin reset the nRF8001, required when the nRF8001 setup is being changed */
hal_aci_tl_pin_reset();
/* Set the nRF8001 to a known state as required by the datasheet*/
mraa_gpio_write (a_pins->m_req_ctx, LOW);
usleep(30000); //Wait for the nRF8001 to get hold of its lines - the lines float for a few ms after the reset
/* Attach the interrupt to the RDYN line as requested by the caller */
if (a_pins->interface_is_interrupt) {
// We use the LOW level of the RDYN line as the atmega328 can wakeup from sleep only on LOW
// attachInterrupt(a_pins->interrupt_number, m_aci_isr, LOW);
}
}
bool hal_aci_tl_send(hal_aci_data_t *p_aci_cmd)
{
const uint8_t length = p_aci_cmd->buffer[0];
bool ret_val = false;
if (length > HAL_ACI_MAX_LENGTH)
{
return false;
}
ret_val = aci_queue_enqueue(&aci_tx_q, p_aci_cmd);
if (ret_val)
{
if(!aci_queue_is_full(&aci_rx_q))
{
// Lower the REQN only when successfully enqueued
m_aci_reqn_enable();
}
}
return ret_val;
}
static uint8_t spi_readwrite(const uint8_t aci_byte)
{
uint8_t reversed, ret;
reversed = mraa_spi_write (a_pins_local_ptr->m_spi, REVERSE_BITS (aci_byte));
ret = REVERSE_BITS (reversed);
return ret;
}
bool hal_aci_tl_rx_q_empty (void)
{
return aci_queue_is_empty(&aci_rx_q);
}
bool hal_aci_tl_rx_q_full (void)
{
return aci_queue_is_full(&aci_rx_q);
}
bool hal_aci_tl_tx_q_empty (void)
{
return aci_queue_is_empty(&aci_tx_q);
}
bool hal_aci_tl_tx_q_full (void)
{
return aci_queue_is_full(&aci_tx_q);
}
void hal_aci_tl_q_flush (void)
{
m_aci_q_flush();
}